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Pressure drop due to the motion of 
neutrally buoyant particles in duct flows 

By HOWARD BRENNER 
Department of Chemical Engineering, Carnegie-Mellon University, 

Pittsburgh, Pennsylvania 

(Received 15 December 1969 and in revised form 4 May 1970) 

The additional pressure drop arising from the presence of a neutrally-buoyant, 
eccentrically positioned, spherical particle in a Poiseuille flow is calculated to 
O ( U / R , ) ~  (a = sphere radius; R, = tube radius). Similar calculations (of a lesser 
order of accuracy) are given for non-circular conduits and for ellipsoidal particles. 
Due to  changes in particle orientation resulting from rotation, the instantaneous 
pressure drop for an ellipsoid of revolution varies periodically with time. This 
pressure diminution is averaged over one period to obtain the time-average 
pressure drop. 

1. Introduction 
Knowledge of the pressure drop accompanying the motion of neutrally 

buoyant particles suspended in a tube flow is relevant to the flow of suspensions, 
blood flow, and capillary tube rheology. Hochmuth & Sutera (1970) treat the 
case of a single spherical particle moving along the axis of a circular tube for both 
small and large ratios of particle-to-tube radii. Large, closely fitted, spherical 
and spheroidal particles in circular tubes have been analysed by Bungay & 
brenner (1970), using matched asymptotic expansion methods. Concentric, as 
well as eccentric particle positions were studied. Wang & Skalak (1969) examined 
the case of an infinite line of spheres translating along the tube axis for an 
extensive range of particle-to-tube radius ratios and centre-to-centre axial 

cing ratios. Their work was subsequently extended by Chen & Skalak (1970) 
to spheroidal particles, again for the concentric case. 

A calculation is presented in this paper of the additional pressure drop caused 
by the movement of an eccentrically situated, neutrally buoyant particle in 
a duct, for small values of the ratio of particle-to-duct size. Results are given 
explicitly for spherical, and (general) ellipsoidal particles in ducts of arbitrary 
cross-sectional shape. In  contrast with the comparable axisymmetric calculations 
of Hochmuth & Sutera (1970) and Skalak and co-workers (1969, 1970), the 
calculation is brought to completion without &he need for a detailed solution 
satisfying the requisite boundary conditions on the duct wall. 
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2. Formulation of the problem 
In this section a general technique is developed for computing the additional 

pressure drop arising from the presence of a particle in an otherwise unidirectional 
duct flow. The method is illustrated by the explicit example of a spherical particle 
in a circular tube. 

Consider a spherical particle (radius = a )  located at  an arbitrary radial posit ion 
within a circular duct (radius = R,) within which a Poiseuille flow is occurring 
(mean velocity = Vm). The geometrical configuration is shown in figure 1. 

FIGURE 1. Eccentrically positioned sphere in a circular cylinder. 

( X ,  Y ,  2)  are a right-handed system of Cartesian co-ordinates with origin along 
the cylinder axis and the Z axis pointing in the direction of net flow. The negative 
Y axis passes through the sphere centre, whose instantaneous co-ordinates are 
(X = 0,  Y = - b,  2 = 0). The radial distance R from the tube axis to any point 
is R2 = X 2  + Y2.  Let (x, y, x )  be a second Cartesian system, having its origin at  
the sphere centre, and chosen such that x = X ,  y = Y + b, and z = 2. Pinally, 
introduce the system of spherical polar co-ordinates ( r ,  6,$)  

x = rsinOcosq5, y = rsinOsin$, x = rcos8, (2.1) 

having its origin at the sphere centre. 

that 
It will eventually be assumed that the sphere is not too near to the wall, i.e. 

a/(Ro-b) < 1. (2.2) 
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In  the absence of the sphere, the undisturbed Poiseuille flow (vo,po) is given by 

YO = 2110, 

V' = 2Vm[l - (R/R,)'], 

po = const. - 8p,Vmz/R;, 

where the caret denotes a unit vector; p, is the fluid viscosity. The arbitrary 
constant in the pressure field may be set equal to zero without loss of generality. 
This flow satisfies the equations 

v2vo = p;lVp0, v * v o  = 0 (2.6) 

and is simultaneously a Stokes (creeping) flow and a Navier-Stokes flow since 
the inertial terms vanish identically. 

When the sphere is present in the duct the fluid motion is altered. Let ( v , ~ )  
denote the flow in the presence of the sphere (at the same mean velocity Vm). It is 
assumed that this motion is governed by Stokes' equations, 

v2v = p;lVp, v ' V  = 0. (2.7) 

v = U,+ 8 x r on the sphere, r = u, (2.8) 

v = 0 on the tube walls, R = R,, (2.9) 

V - v 0  as z++oo, (2.10) 

p - + C + p o  as z-+--co, (2.11) 

p - - $ C + p o  as z++co. (2.12) 

The instantaneous boundary conditions are 

U, is the translational velocity of the sphere centre 0, 8 is the angular velocity 
of the sphere, and r is the position vector measured with respect to the sphere 
centre. The values of the unknown vectors U, and !2 are ultimately to be deter- 
mined by the condition that the sphere be neutrally buoyant. Conditions 
(2.10)-(2.12) are equivalent to the requirement that the disturbance to the 
Poiseuille flow vanish at  large axial distances from the sphere. The positive 
constant C in (2.11)-(2.12) reflects the additiona2 pressure drop, AP+, above and 
beyond the Poiseuille pressure drop, attributable to the presence of the sphere 

C = AP+. (2.13) in the flow; that is 

It is this quantity that we seek to calculate. 
In view of the linearity of the governing equations and boundary conditions, 

V = V - V " ,  - P = P-PO, 

V2T = p;lV,, v a t  = 0, 

the disturbance fields 

satisfy Stokes' equations, 

and the boundary conditions 

(2.14) 

(2.15) 

t = U , + S 2 x r - v o  at r = a ,  (2.16) 

t =  0 at R =  R,, (2.17) 
41-2 



644 H .  Brenner 

7 - 0  as x - + + o o ,  

p - & C  as x + - o o ,  

p--*&c as z++oo. 
- 

I 
ds 
4 

- 
Exit, S,(z= + co) 

(2.18) 

(2.19) 

(2.20) 

Particle, S ,  - 

Inlet, 
S i ( Z  = - co) - 

FIGURE 2. Particle in a duet of arbitrary cross-section. 

A general formula for the additional pressure drop will now be developed. This 
formula holds for particles of arbitrary shape and cylindrical ducts of arbitrary 
(but constant) cross-section, as in figure 2. Consider the fluid bounded externally 
by the cylinder walls (w), the inlet (i) to the cylinder at z = - 00, the exit ( e )  from 
the cylinder at  x = + CO, and bounded internally by the particle (p). To this region 
we may apply the following reciprocal theorem (Brenner 1963), valid for Stokes 
flows: 

f s d S .  P.VO= ds.PO.v, (2.21) 
$S 

where S denotes the closed surface 8 = S, + S, + 8; + S, bounding the fluid 
volume, and P is the pressure tensor, given generically by the formula 

P = -Ip+po[Vv+(Vv)~]. (2.22) 
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The directed element of surface area d s  is  taken to be drawn inward into the 
fluid volume, as depicted in figure 2. The contribution to these integrals from 
each of the four bounding surfaces will now be considered. 

Since v = vo = 0 on S,, the side walls make no contribution to these integrals. 
In  view of the condition v = U, + Q x r on S,, the contribution of the particle 

to the righb-hand integral is 

ds*Po*v = U,*Fo+Q*Tg, 

where 
P r 

are the force and torque (about the particle centre 0) exerted by the undisturbed 
flow on the region of space V, occupied by the particle. As Po is non-singular in 
this region, the divergence theorem may be employed to convert these to volume 
integrals, yielding 

I- I- 

But V P O  = 0 everywhere, giving Fo = 0 and Tg = 0. Consequently, 

Ispas. PO ' V  = 0. 

Upon collecting results we obtain 

(2 .23)  

as . P  'VO = J ds.Po*v. (2.24) 

At the inlet and exit, x = k cx), we have that vo = bvo and v = bv = bvo, since 
v = vo at 1x1 = co. Moreover, dsl, = - b d A  and dsl, = + b d A ,  where dA is 
a scalar element of cross-sectional area on a plane x = constant. Consequently, 

se+si 
Jsp as . P . VO + J 

Se+& 

at the duct exit, 

in which 

where p :  is the pressure at the exit in the absence of the particle. This makes 

ds*Po*vlse = p z v o d A .  (2.25) 

Analogously, at the duct inlet, 

ds *PO*vls, = -&V0dA. (2.26) 

Proceeding similarly for the other class of terms, we find at the exit that 

ds * P vO(se = - PZzlSe~OdA,  

where 

We have here utilized the fact that av/azlse - avolax as x+m, and that vo is 
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independent of x.? Therefore) 

ds P v0lSe = pe VOdA. 

Likewise, ds.P*vols,  = -piv0dA. 

Substituting these results into (2.24) yields 

(2.27) 

(2.28) 

j spds .P*vo = j A ( p l - p e ) v o d A ,  

in which Fi =  pi-^:, p e  = ~e-p ,O 

are the disturbance pressures at  the inlet and exit. Equations (2.19) and (2.20) 
show that pi = +C and pe = -$C, respectively, so that from (2.13), 

- 
pi -Fe  = AP+. 

Furthermore, from the definition of the mean velocity, 

/ A  vodA = VmA. 

In  this manner we obtain 

AP+Vm A = jSp ds - P . VO. (2.29) 

The preceding relation expresses the additional pressure drop in terms of an 
appropriate integral over the surface of the particle. It applies to a particle of 
any shape and is valid for a cylindrical duct of arbitrary cross section, provided 
only that vo refers to the undisturbed flow in that duct. 

Evaluation of the integral appearing in (2.29) is a straightforward, but alge- 
braically tedious) chore-especially when the particle is non-spherical. The 
requisite calculation can be greatly simplified by the following line of reasoning. 
Suppose that the field (v,p) defined by (2.7)-(2.12) has been determined. One can 
imagine this motion to be analytically continued outside the physical boundaries 
of the apparatus. By this device the motion may be regarded as extending to 
infinity. Let 8, denote a spherical surface of indefinitely large radius containing 
the particle at  its centre. In a purely formal manner, the general reciprocal 
theorem cited in (2.21) may be applied to the fluid (real and hypothetical) 
bounded externally by 8, and internally by the particle. Consequently, 

ds * P 'VO = s s S * + S m  Sp+Sm 

JSm 

ds.Po.v. 

This relation may be combined with (2.23) and (2.29) to yield 

AP+V,A = ds*(P"*v-P.vO). 

7 The disturbance velocity created by a particle moving in a tube dies off exponentially 
rapidly (Sonshine & Brenner 1966) with axial distance z for sufficiently large 121, i.e. it is of 
order exp ( - k Izl/Ro) where k is a positive non-dimensional constant. Hence, no question 
exists its to the validity of setting avlaz = 0 at lz[ = CO. 
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Since v = V + vo and P = P + Po, it follows that 

po.v-p.vo =po.T-p.vo, 

In addition, on the surface X,, ds = - l r 2  di2 where di2 = sin 8 d8 d$ is an element 
of surface area on a unit sphere. Hence, we obtain 

AP+V,A = lim r2(p, avo - P: s t )  dQ, (2.30) 
T+m 1% 

where P, = i? P is the stress vector on a spherical surface r = constant. 
The fields vo and Po are presumed to be known from the available solution of 

the elementary duct-flow problem. Equation (2.30) therefore enables a calcula- 
tion of the additional pressure drop to be performed solely from a knowledge of 
the asymptotic behaviour of the perturbation field (V, @) for large r. This calcula- 
tion is significantly simpler than that required by (2.29) since it is now unneces- 
sary to utilize the complete perturbation field in the calculation; rather, it 
suffices to retain only those terms leading to a contribution of O(+) in the 
parenthetical term appearing in the integrand of (2.30). Furthermore, in the case 
of non-spherical particles, it is generally easier to integrate over the surface of 
a sphere than over the physical surface of the particle. 

3. Additional pressure drop 

can be expanded in a polyadic Taylor series about the centre of the particle: 
The undisturbed velocity field, being analytic at all points within the cylinder, 

vo = vg+wgxr+r*Sg++rr:VVVO. (3.1) 

For Poiseuille flow in a circular tube the expansion terminates with the term 
quadratic in r. The double-dot notation conforms to the nesting convention. 
The subscript o refers to the evaluation at the centre of the fluid volume presently 
occupied by the particle. In the above, 

wo= ivxvo (3.2) 

and s o  = i[VVO+ (VvO)+] (3.3) 

are, respectively, one-half the vorticity vector and rate of shear dyadic for the 
undisturbed flow. For the circular tube the coefficients in the Taylor expansion 
are, explicitly, 

(3.4), (3.5) 

(3.6), (3.7) 

in which P = bIR0 (3.8) 

V; = &2Vm(l -p2), ~8 = 22R,lVmP, 

Sg = (92 + 29) 2R,lVm/3, VVVO = 4R,zVm(k&2 - I&), 

is the fractional distance of the centre of the particle from the tube axis. This 
function lies in the range 0 < /3 < 1. For a spherical particle, the boundary 
condition (2.16) may be written as 

t = ( U o - v ~ ) + a ( ~ - w ~ ) x 1 - - a i ? ~ S ~ - ~ a 2 P F : V V v ~  at r = a. (3.9) 
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The hydrodynamic force and torque on the particle arising from the complete 
state of motion (v,p) are 

n 

(3.10) 

A neutrally buoyant particle is one whose translational and angular velocities 
are such that F = 0 and T = 0, the torque then being independent of the choice 
of origin. Consider a spherical particle immersed in a Poiseuille flow. Suppose 
that the sphere rotates with angular velocity 2Q and that the sphere centre 
translates with velocity SU. The force and torque exerted by the fluid on the 
sphere are then (Brenner 1 9 6 6 ~ ;  Greenstein & Happel 1968) 

(3.11) 

and T, = - S ~ , U , U ~ [ U (  0 - 2Vm/3/Ro) + { U - 2V,( 1 - p')} 
x (1 +g(P)h}h2+W(h4)I, (3.12) 

where h = a/R,. (3.13) 

The functions f ( P )  and g(p) are the wall-effect functions defined by Brenner & 
Happel (1958). Numerical values of these functions in the range 0 6 p < 0.9 are 
tabulated by Famularo & Happel (1965) and, more accurately, by Greenstein & 
Happel (1968). An even more accurate tabulation over the entire /3 range from 
0 to 1 is given by Hirschfeld & Brenner (1970). Equations (3.11) and (3.12) are 
valid in the range h < 1 - p  [cf. equation (2.2)]. 

In the neutrally buoyant case it follows from (3.11) that the sphere centre 

u, = 2u, (3.14) translates with velocity 

(3.15) 

(3.16) 

where v: is given by (3.4), and V2vo is given by (2.6) with 

Vp' = -~8p,V,V,/R~ (3.17) 

as the Poiseuille's law pressure gradient. Upon substituting (3.15) into (3.12) and 
setting To = 0,  the angular velocity of a neutrally buoyant sphere is found to be 

B = ftQ, (3.18) 

where Q = 2Vrn,8/Ro+u-1g(/3)VmO(h4). (3.19) 

Equivalently , 4Q - 4) = g(P) v, W4), 
7 The functionf(P) has the value 2.104 a t  p = 0, decreases to a minimum of 2.044 a t  

p =  0.40, and increases monotonically thereafter, ultimately attaining the asymptotic form 
f (p )  - ig6( 1 - p)-l as p -+ 1. Thus, in the latter limit, f ( P )  h - &A/( 1 - p). Since the theory is 
confined to circumstances where h/( 1 -p) < 1 [cf. equation ( 2 . 2 ) ]  it follows that 

r 1 -M hi vm ~ 3 )  = vm ~ 3 )  

for allvaluesofp. Thisfactleadsatonce from (3.11) to (3.15). 
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where is given by (3.5). The function g(p)  vanishes at p = 0 and increases 
monotonically, eventually attaining the asymptotic form? g(p) = O( 1 as 
p+ 1. Since we have assumed that A / ( l  -p )  < 1, it follows that g ( p )  = O(A-1) for 

all p. Consequently, a ( ~  - a:) = v, o(~3). (3.20) 

The error estimates in (3.16) and (3.20) prove crucial in the subsequent analysis. 
In  conjunction with (3.16) and (3.20) the boundary condition (3.9) becomes 

V = -aPl(P) .s~-Qa2P2(F):VVvo+V,O(A3) at r = a (3.21) 

for a neutrally buoyant sphere. Here, 

P1(P) = P, P,(P) = S(3PP-I) (3.22) 

are the polyadic Legendre functions (Brenner 19643; Ripps & Brenner 1967) of 
orders 1 and 2, respectively. 

It proves convenient to decompose the perturbation field into a sum of two 

(3.23) 

in which the individual fields (vr,pr) and ( vn ,p")  each satisfy Stokes' equation 
and the continuity equation. The former field is required to satisfy the boundary 

conditions v' = - aPl(P) Sg at r = a, (3.24) 

v' = 0 at R = R,, v' N 0 as z + i o o ,  (3.25), (3.26) 

- 
fields, as follows: s = v' +vn, p = p,'+p", 

while the latter is required to satisfy 

V" = -Qa2P,(P):VVvO+VmOO(h3) at r = a, (3.27) 

v'~ = 0 at R = R,, V" N 0 as x + + o o .  (3.28), (3.29) 

It is convenient to refer to the primed and double-primed fields as the 'shear ' 
and ' quadratic ' contributions, respectively. Since the pressure drop formula 
(2.30) is linear in (0, p )  the respective contributions of these fields to the additional 
pressure drop may be separately treated and the results subsequently added. 

Xhear contribution 

Calculation of (vr,pr) requires that we solve the Stokes and continuity equations 
so as to satisfy the boundary conditions (3.24)-(3.26) for small A. Such problems 
can be solved to any order in h by the method of reflexions (Brenner & Happel 
1958), the method of Haberman & Sayre (1958)' or the method of matched 
asymptotic expansions (Cox & Brenner 1967). Employing the first-mentioned 
technique, we write 

vr = v;+v;+v;+ ..., p r  =p,;+p;+p;+ ..., (3.30) 

where each separate field, (v i ,p i ) ,  satisfies the equations of motion. The following 
boundary conditions are imposed on the individual fields : 

v; = {-uP1~P)*Sg at r = a, 
as r - foo ,  

(3.31) 

t That this is so can be seen from the numerical tabulations (Greenstein & Happel 1968; 
Hirschfeld & Brenner 1971) of g ( p )  vs. p,  which clearly show that (1 - p ) g ( p )  approaches 
a small, finite constant as /3 + 1. 
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I -v; at R = R,, 
0 as z-trtco,  

v; = (3.32) 

(3.33) 
-v; at r = a, 

0 as r-+co, 
v; = 

etc. The odd-numbered fields constitute the ‘reflexion’ of the preceding, even- 
numbered, velocity fields from the surface of the sphere. Conversely, the even- 
numbered fields correspond to the reflexion of the preceding, odd-numbered, 
fields from the cylinder surface. The even fields are required to be finite at  all 
points within the cylinder, including the region of space presently occupied by 
the sphere. In contrast, the odd fields will possess singularities in the interior of 
the sphere. 

The first reflexion, satisfying (3.31), is easily obtained via the general methods 
outlined by Brenner (1964~).  A general solution of the Stokes’ and continuity 
equations which vanishes at infinity is 

v x (rx-(?%+ld +VY-(?%+l) 
n = l  

m 

P = x P-(n+l), 
n = l  

(3.35) 

in which x - ( ~ + ~ ) ,  T - ( ~ + ~ ) ,  p-(n+l) are solid spherical harmonics of order - (n  + 1). 
The Einstein (1905,1911) field (vi,p;) satisfying (3.31) is given by the above with 

pP3 = -9p,(a/r)3P2(F): SE, (3.36) the valuest 

( P - ~  = -+az(a/r)3Pz(F): S;, (3.37) 

all the other spherical harmonics being zero. Owing to the incompressibility of 
the fluid, I: Sg = 0. More explicitly, substituting the value of S,O from (3.6) yields 

p-, = - ~h/3a-1Vm(a/r)3P~(cos 0) sin:$, (3.38) 

(p-3 = - 3h/3aVm(a/r)3 P&os 0) cos $, (3.39) 

in which PE(cos0) is an ordinary Legendre function; in particular, 

Pi(cos8) = 3sin0cos8. 

The dominant term governing the asymptotic behaviour ofv; as r + m is a term 
of O(r--2) arising from the pP3 harmonic; that is, 

v’ --- - l,”Vmh/3(r/u) ( U / ~ ) ~ P ~ ( C O S ~ )  sin q5 +V,h/3O(a/.~)~ as r-tm. (3.40) 

The term displayed explicitly is of the form Vmh/30(a/r)2. 

harmonics of order - (n + 1). Thus, if A,, is any n-adic constant, the scalar field 
t Note that, in general, terms of the form r-(n+l)PR(?) are polyadic solid spherical 

r-(n+l)A 1% 
I&( ) P n  

is an ordinary solid spherical harmonic. (The symbol ( n )  denotes n-dot multiplication.) 
Indeed, A,,(%) P, is an ordinary scalar surface spherical harmonic of degree n. 
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On the cylinder wall we have that r = O(Ro). Consequently, for small A, 

v; = Vm7mPO(h3) at R = R,. 

It thus follows from the boundary conditions (3 .32)  defining V; that 

v; = Vm7mPO(h3) at R = R, 

in so far as dominant terms in h are concerned. Since v; is regular at  all points in 
the interior of the cylinder, this field will be of the form 

v; = Vmh37mP?(ii) 

in which fi de?o?es a general position vector made dimensionless with the tube 
radius R,, and f (R)  is a dimensionless vector function which is of O( 1) everywhere 
in the tube. The latter will generally depend upon p ,  but in a non-singular manner. 
Expansion in Taylor series about the sphere centre thereby yields 

A A A CI 

v; = ~ ~ h 3 ~ [ f 0 + ~ ( V x f ) , x r + r  *(Vf):Ym+$rr:(VVf),+ ...I, 

in which (V?)sYm = 1 2[V:+(Vi)t] is the symmetric part of the dyadic V?. As 
before, the subscript o refers to evaluation of the function to which it is appended 
at the sphere centre. In terms of the dimensionless gradient operator 6 = ROB, 
the above expansion may be written as 

Upon putting r = a in the above, it follows from (3 .33)  that V; is required to 
vanish at  r = co and to satisfy the following boundary condition on the sphere 
surface : 

v; = - vmh3/3[iO + +A($ x i), x F + AF . (Vf):ym + 4 ~ 2 ~ :  (VVf), + ...I at r = a. 
(3.42) 

The constant polyadics i,, (6 x i),, ($):Ym, ($$:),, . . . , are all of O( l ) ,  as are the 
unit vectors F. 

The even-numbered fields in (3 .30)  can exert neither a force nor torque on the 
particle since they are non-singular in the space occupied by the particle (cf. the 
analogous arguments preceding (2 .23)  in regard to the non-singular field v"). 

* *  A 

(3 .43)  
Consequently, 

F' = F;+F;+ ..., TA = (T;),+(T;),+ .... 
The force and torque on the sphere associated with (3.34)-(3.35) are, in general 
(Brenner 1964a), F = - 4 7 ~ V ( r ~ p - ~ ) ,  To = - S ~ , u ~ V ( r ~ x - ~ ) .  (3 .44)  

As regards the field v;, we have inter alia that p-2 = 

and ( P - ~  harmonics are non-zero. Hence, 
= 0,  since only the p-3 

F; = 0, = O .  (3 .45)  

(3 .46)  

From (3 .43)  the conditions of neutral buoyancy, F' = 0 and Th = 0, thereby 
require that F;+FA+ ... = 0, (T;)o+(T;)o+... = 0. 
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By Faxbn’s laws (Brenner 1966b) we have that 

Fj = 677p,~[(vL), + &2(Vz~;l),] (3.47) 

and (Tj), = 477p,~,~(V x v;),, (3.48) 

whence, from (3.41), Fi = 6~~0aVmh3~[~ ,+Qh2($2f7 ) , ]  (3.49) 

and (Tj), = 4 ~ ~ 0 a 3 ~ r n ~ 4 p ( 6  x i),. (3.50) 

As will be demonstrated aposteriori in the following paragraph, the condition of 
neutral buoyancy requires that 

io = - + P ( P ~ ) ,  + 0 p 3 ) ,  (6 x i), = o(~3). (3.51) 

Upon substituting the latter relations into (3.42), the boundary condition 

vi = - v ~ A ~ P P ~ ( P )  ( $ ; ) ; Y ~ + V ~ P O ( A ~ )  at r = a. (3.52) 

Comparison with the completely analogous problem defined by (3.31) leads 
immediately to the conclusion that 

satisfied by vi on the sphere becomes 

v; = Vm,80{A4(a/r)2} as r -+ co, (3.53) 

p i  = ~,U-~V~,~O{A~(CZ/~)~} as r -+ 00. (3.54) 

Proceeding as before, it can readily be demonstrated that V: = VmPO(A6) at 
R = R,, and eventually that 

J$ = 677p,aVmh6p[& + O(h)], (3.55) 

(%), = 4~p,a3%A7p[(t x h, + O(h) l ,  (3.56) 

where ghis a dimensionless vector function of O( 1) which bears the same relation 
to vi as f bears to vL. The terms of O ( h )  in square brackets stem from the neglected 
term of O(A5) in (3.52). Upon adding the latter relations to (3.49) and (3.50), 
respectively, and taking account of (3.46), we obtain 

f“, + th2($2f), + ~ 3 6 ,  + o ( ~ 3 )  = o 
(t x i), + ~ 3 ( t  x &, + 4 ~ 3 )  = 0. 

Since & and ($x i ) ,  are of O(l ) ,  (3.51) (and, hence, (3.53) and (3.54)) are 
confirmed. 

The even-numbered velocity and pressure fields decay exponentially rapidly 
as r+co (cf. the first footnote p. 646). Accordingly, we conclude that the exact 
solution of the ‘shear’ boundary-value problem defined by (3.24)-(3.26) will be 
of the asymptotic form 

A 

and 

v’ = v; -I- Vm,80{h4((a/r)z} as r --f co, (3.57) 

p’  = p i  +poa-1Vrn,80{h4(a/r)3} as r+co, (3.58) 

in which (v;,pi) are given by (3.34)-(3.35) with the values of the harmonic 
functions cited in (3.36)-(3.37). The corresponding pressure tensor is 

P’ = PI +p0a-1Vm,80(h4(a/r)3} as r 300. 
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The comparable stress vector, 

may be computed from the general formula (Brenner 1964a)t 

which pertains to the general solution (3.34)-(3.35). The value of (Pi), may be 
obtained from this expression by inserting the values for p-, and ( P - ~  given by 
(3.36)-(3.37) and putting all the other solid spherical harmonics equal to zero. 

Upon substituting into (2.30) and performing the requisite integrationsJ 
the contribution of the 'shear' field (v',p') to the additional pressure drop is 

(AP+)~v,A = ~ p ~ p , ~ , v ~ p ~ 3 [ 1  +o(n3)]. (3.61) found to be 

Quadratic contribution 
Attention is now directed to the computation of the 'quadratic' contribution 
(v" ,p")  defined by the boundary conditions (3.27)-(3.29). Employing the expres- 
sion for VVvo given by (3.7), noting that Pz(P): I = 0 and that 

P,(F)::&~ = ~ ~ ( ~ ~ ~ e )  = g3cos2e- 1) 

(where P, is the Legendre polynomial of order n), we find that V" satisfies the 
following boundary condition on the sphere : 

v" = - @Vmh2P2(cos e) + v,o(h3) at r = a. (3.62) 

As in the shear case, this boundary-value problem may be solved for small h by 
the method of reflexions. Define 

v" = v;+v;+v;+ ... +v,o(A~), p!' = p;+p;+p;+... +p0~-1v,0(h3), (3.63) 

where (v;, p;)  satisfy the equations of motion and the boundary conditions 

(3.64) 

t Alternatively, it  may be computed from the relation 

valid for an incompressible Newtonian fluid. 

obtain 
(AP+)'  VmA = - Q7rVV(r5p-J : S; + o(h3) 

in general. For the case of a spherical particle in an arbitrary field of flow, we find upon 
substituting from (3.36), that 

(AP+)'VmA = ~3%r,uoS;:S;+o(h3). 

Note that the v-s harmonic makes no contribution to the pressure drop, as follows immedi- 
ately from the fa& that its contributions to  v' and Pi are of orders T-4 and T - ~ ,  respectively. 

$ Employing the integration methods of Sehowalter, Chaffey & Brenner (1968), we 
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-v: at R = R,, 

0 as z++o3, 
v;= [ 

-v; at r = a, 
0 as r+m, 

(3.65) 

(3.66) 

etc. 
The solution of the first-order equations (3.64) may be expressed in terms of 

the general solution (3.34)-(3.35) by eliminating all harmonics except for the 

(3.67) following : 

(p-4 = - guV,hz(a/r)4 P3(cos 6'), (3.68) 

p-4 = - 7p,a-1Vmh2(a/r)4 P3(COS 6'), (3.69) 

where PI( cos 8) = cos 6' and P3(cos 6') = +( 5 cos3 6' - 3 cos 6'). The dominant term 
in this velocity field as r - f m  is of the form vl = V,h20(a/r)3. Since r = O(R,) on 
the cylinder wall, this leads, by the same reasoning as in the shear case, to the 
conclusion that vi = V,0(h5). This term is already of larger order in h than the 
error term V,0(h3) appearing in (3.63)) and hence may be neglected. 

Since the sphere experiences no force, there can be no term in vff of O(r-l);T 
only a term of O ( r n )  (n 2 2) is possible. It may be concluded, therefore, that 

(Pp2 = &aVmh2(a/r)2 P1(cos 6'))  

V f f  = Vf' + V, O ( ~ ( a / r ) ~ )  as r + co, (3.70) 

p f f  = ~'I;+p,~-~V,O(h~(a/r)~} as r - fco .  (3.71) 

Utilizing (2.30) and proceeding as before, the contribution of ( v f f , p n )  to the 
additional pressure drop is ultimately found to be 

(AP+)~~v,,A = 16mp, R, V;  ~ 5 [ 1 + 0 ( 4 1 .  (3.72) 

4. Results for a neutrally buoyant sphere in a circular tube 

drop : 
Equations (3.61) and (3.72) may be added to obtain the additional pressure 

(4.1) 

where A = nR2. The error term in this expression is a function of p; that is, it  is 
of the form ,uo R, V;F(p )  O(h6) where F ( p )  is a non-dimensional function of O( 1) .  
Equation (4.1) is one of the principal results of this paper. The term AP+Vm,A 
represents the additional mechanical energy dissipated in the duct due to the 
presence of the sphere, above and beyond the Poiseuille dissipation. 

The leading term in (4.1) is a special case of a more general formula for the 
additional rate of dissipation D+, arising from the presence of a neutrally buoyant 
sphere in an arbitrary field of flow vo (Brenner 1959, 1962, 1966a), 

AP+V,A = 160 mp,R, V2p2h3+ 167rp,R, V ~ h 5 + , u o R o  V k 0 ( h 6 ) ,  

B+ = p~, Q: + o ( u / z ) ~ ,  (4.2) 

7 The only non-trivial term in (3.34) that can lead to a term of O(r-l)  in the velocity field 
is thep-, harmonic. However, since the force on the neutrally buoyant sphere is zero, (3.44) 
shows that we must have p +  = 0. 
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where up = $ 7 7 ~ 3  is the volume of the sphere, 1 is a characteristic apparatus 

(4.3) 
dimension, and 

is the local rate of mechanical energy dissipation for the undisturbed flow evalu- 
ated at  the centre of the space occupied by the sphere. For Poiseuille flow, Sg is 
given by (3.6), whence @: = 16p0 V&B2/R:. Setting Df = AP+VmA and putting 
I = R, thereby yields the leading term of (4.1). The factor of + in (4.2) is the 
Einstein (1905, 1911) factor in the formula p = p,(l+&5) for the apparent 
viscosity of a uniform suspension of spheres. 

@g = 2p, so,: s; 

Equation (4.1) may be expressed in the alternative form 

AP+Ro/poVm = lPp2h3+ 16h5+ O(h6). (4.4) 
This formula applies to the case where h Q 1-/3 [cf. equation (2.2)]. This 
criterion stems from the failure of the method of reflexions to converge when the 
particle is too near the wall. This restriction does not imply that p cannot 
approach unity. For example, if h = and ,8 = 0.99, then A/(  1 - p) = 0.01 < 1, 
and the criterion is well satisfied. 

The error estimate in (4.4) applies only to cases where /3 + 0. The error is much 
smaller for the concentric case, /3 = 0. The difference between the concentric and 
eccentric cases stems from four sources: (if The work of Haberman & Sayre (1958) 
shows? that, forp = 0, (3.15) is valid to O(A5) rather than O(h3). Though the term 
of O(h3) in (3.11) has never been calculated explicitly for ,!? + 0, it can be demon- 
strated to be non-zero. (ii) In  the concentric case, the local vorticity and the 
angular velocity of the sphere are identically zero. The relation !2 - wg = 0 is 
then valid to all orders in A ,  rather than only to O(A3) as in (3.20). (iii) When p = 0 
the harmonic functions p-3 and (pW3 in (3.38)-(3.39) vanish identically, owing to 
the absence of local shear at  the tube axis. Consequently, the disturbance 
velocity T is no longer of O{A(a/r)2} as in (3.40), but is rather of O{A2(u/r)3}, as in the 
leading berm of (3.70). (iv) Symmetry arguments show that the ‘shear’ terms 
($ xf),  and (f&Yrn in (3.41) are necessarily zero for a concentrically located 
sphere. Since f, = O(h2), then, to terms of lowest order in A, the Taylor expansion 
(3.41) begins with a term of O(r2)  rather than one of O(r ) ,  as was formerly true for 
the casep + 0. 

When the error analysis is appropriately altered to take account of the very 
special circumstances pertaining to the cgse p = 0, it is easy to show that the 
error term in (4.4) becomes O(hlO). The additional pressure drop for the sym- 
metric case, = 0, is therefore of the form 

AP+R,/p,V, = 16h5 + O(AlO). (4.5) 
This result was obtained independently by Hochmuth & Sutera (1970) from 
a detailed solution of the corresponding axisymmetric boundary-value problem. 
Their analysis gives explicitly the term of O(hlO),  as well as several other higher- 
order terms in the expansion. Moreover, they cite experimental evidence in 
support of this relation. 

t Explicitly, the analogue of (3.11) for p = 0 is 
U-2v,+$vmh2+O(h~) 

1 - 2-104h + 2*09hS - 1-71h6 
F = -26~p,,a 



656 H .  Brenner 

Lubrication-theory-like calculations have been utilized to obtain comparable 
expressions for the translational and angular velocities of the sphere, and the 
additional pressure drop, for the case of a large, closely-fitting sphere, A+ 1.  This 
has been done for both the concentric case (Hochmuth & Sutera 1970) and the 
eccentric case (Bungay & Brenner 1970). 

The eccentricity at  which the two terms in (4.4) become comparable occurs at  
the value ,5 = h(3/10)*. For h = 0.1 this corresponds to a value of ,5 = 0.055. Use 
of the concentric-sphere formula (4.5) for a particle which appears visually to be 
centred a t  the tube axis may therefore lead to appreciable errors, even for a 
relatively small degree of eccentricity. 

Small departures from a precise state of neutral buoyancy may also result in 
appreciable errors. Consider a spherical particle in a vertical tube. The additional 
pressure drop force due solely to the drag on the particle is (Brenner & Happel 
1958; Brenner 1962) APA A = 2(1 -p2)  D, in which the drag force D is the weight 
of the particle corrected for the buoyancy of the fluid: D = $na3Apg, where A p  is 
the density difference between the particle and the fluid and g is the acceleration 
of gravity. This makes APA = $A3( 1 - p2) ApgR,. (4.6) 

Consequently, (4.7) 

in which ApO/L = 8poVm7,/R: (4.8) 

is the Poiseuille pressure gradient in the absence of the particle. For ,5 =t= 0, 
(4.7) shows that the error incurred in the additional pressure drop by ignoring the 
density difference is of the order of Apg(ApO/L)-l. This may be very large if the 
pressure gradient is very small. The situation is much worse if /3 = 0; for then 
the error is essentially l/h2 times as large. And this increases without bound as 
h+O. 

5. Non-circular ducts 
The pressure drop formula [cf. equations (4.2)-(4.3)] 

AP+VmA = &&LL,cc~S:: S:+0(h3) (5.1) 

is valid to the indicated order in h for a neutrally-buoyant spherical particle in 
a cylindrical duct of any cross-section, provided only that one inserts the value 
of So appropriate to that duct. Since the undisturbed flow vo in a cylinder 
of constant cross-section is unidirectional we may write vo = 2vo, where 
v0 = vo(X, Y ) .  The general formula (5.1) reduces in this case to 

AP+VmA = ~ 7 r a 3 ( V v o ) ~  +0(h3),  (5.2) 

in which ( V V O ) ~  = (Vvo) * (Vv"). 

this case (Lamb 1932, p. 587), 
Consider, for example, flow in an elliptic conduit of semi-axes R, and R,. For 
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where X and Y are measured from the centre of the ellipse. If the lateral position 
of the sphere centre corresponds to the co-ordinates X = b,, Y = b, this gives 

AP+V,A = +7,u,a3Vfn - +-4 +0(h3) (:: (5.4) 

The cross-sectional area is A = rrR, R,. Consequently, 

AP+(Rl+R2)/poVm = ?7~(h~+h,) (h;p2,+h;p:) +0(h3), (5.5) 

in which Ai = a/Ri and pi = bi/Ri. This correctly reduces to the leading term 
of (4.4) for a circular duct, R, = R, = R,, b, = b, b, = 0. 

It is possible to demonstrate that the error term in ( 5 . 5 )  is of O(h5).  Indeed, it 
is easily possible to calculate this term explicitly by repeating the prior calculation 
of the ‘ quadratic ’ contribution (v”, p”)  for the slightly altered boundary condi- 
tions on the sphere. We have not done this, however. 

As the larger of the two radii becomes infinite, the additional pressure drop 
given by (5 .5 )  goes to zero. This is, of course, to be expected since the additional 
energy dissipation remains finite, whereas the cross-sectional area becomes 
infinite. The additional pressure drop force, AP+A, remains non-zero in this 
limit. 

6. Ellipsoidal particles 
The general methods of the present paper may be employed to calculate the 

additional pressure drop caused by the presence of a non-spherical, neutrally 
buoyant particle in a duct flow to terms of lowest order in A-the ratio of particle 
to duct size; that is, the analogue of (5.1) can be developed for non-spherical 
particles. In  this section the calculation will be carried to completion explicitly 
for a general ellipsoid with three unequal axes. 

The term AP+Vm A gives the additional rate of mechanical energy dissipation 
due to the presence of the ellipsoid in the duct. As in the analogous case of the 
sphere, this quantity can be computed correctly to O(h3) by retaining only the 
linear terms in (3.1); that is, by replacing the actual duct flow by an equivalent 
local shear flow characterized by SE. But Jeffery (1922, equation (59)) has already 
computed the additional dissipation rate D t  due to the presence of a neutrally 
buoyant ellipsoid in a general shearing flow. In this manner we obtain 

AP+cAA = D++o(h3), (6.1) 

Here, a,, a2, a3 are the lengths of the semi-axes of the ellipsoid, and 
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Expressions for the remaining a integrals can be obtained by permuting the 
indices.t The coefficients 8 j k  refer to the components of Sg resolved along the 
principal axes of the ellipsoid, i.e. Sg = ejekSj,, in which e,, e,, e3 are unit vectors 
along these axes. In the special case where the ellipsoid is one of revolution about 
the 1 axis (i.e. a2 = a3), with axis ratio s = a1/a2, the a integrals reduce to the 

cosh-Is (s > l), 
1 

(6.4) 
cos-1s (s < 1). 

1 .=Im* s( 1 - s2)4 

in which 

To terms of dominant order the unidirectional flow in a duct may be regarded 
locally as a simple shear flow (Brenner 1966a, p. 391), the rate of shear K being 

(6.5) 
given by the expression 

[cf. $51. However, as is well known (Jeffery 1922; Goldsmith & Mason 1967), 
a neutrally buoyant ellipsoid of revolution immersed in a simple shearing flow 
undergoes a periodic rotation at  the same time as its centre translates along 
a streamline at the same speed as the local fluid velocity vg. For such a body, the 
Sj, coefficients in (6.2) will therefore be periodic functions of time since Sg is 
constant with respect to axes fixed in space whereas the vectors el, e,, e, locked 
into the ellipsoid will vary periodically in time relative to a space-fixed observer. 
Accordingly, the pressure drop will be a periodic function of time. The time- 
average additional pressure drop (AP+) may be obtained from knowledge of the 
instantaneous value of B+ by integrating (6.1) over one period. The time-average 
additional dissipation rate (a+) has already been computed by Jeffery (1922), 
with the result that 

K = (2sg:Sg)4 Z I(vV"),l 

in which k = kla,, where k is the 'orbit constant ' defined by Jeffery. In effect, this 
constant specifies the initial orientation of the particle. 

The above expression is valid for an ellipsoid of revolution in an arbitrary 
unidirectional duct flow, characterized by the shear rate (6.5). For a circular tube 
of radius R, we have A = TR;, K = 4Vmb/Ri, and h = max (al, a,) /Ro. 

f The dimensionless a integrals are related to tho original ao, F0, yo integrals of Jeffery 
by the expressions 

llai; = ( a 1 a 2 a 3 ) 2  I l a ~ / % ;  ?:/u3[19 

11a;; a;; = a,a,a,~~a;; p;; ?;]I. 
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For a sufficiently small value of A, the centre of the ellipsoid will maintain a 
fixed distance b from the tube axis as the ellipsoid rotates and translates parallel 
to the tube axis. At larger values of A, however, where wall effects are sensible, the 
centre of the ellipsoid is likely to migrate across the streamlines (Brenner 1966 a, 
pp. 377 ff.), resulting in a time-dependent value of K .  

This research was supported by the National Science Foundation under grant 
numbers GK-1458 and GK-12583. 
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